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Abstract—Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) and the corresponding pyrrolobenzothiadiazepines (PBTDs) are attractive tar-
gets as natural and synthetic antitumour antibiotics and as non-nucleosidic reverse transcriptase inhibitors. A concise synthesis of
the PBTD class is presented, which starts from o-azidobenzenesulfonamide and its conversion into 2-(o-azidobenzenesulfonyl)-1,2-
thiazine 1-oxides via Diels–Alder reaction. After a one-pot ring contraction, desulfurisation and aromatisation process, accompa-
nied by concomitant same pot conversion of the azide group into a primary amine via the Staudinger reaction, these 1,2-thiazine-
1-oxides yield a 1-(o-aminobenzenesulfonyl)pyrrole. N-Formylation of the amine and Bischler–Napieralski ring closure onto the
pyrrole completes the PBTD synthesis.
� 2004 Elsevier Ltd. All rights reserved.
The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are of
interest1,2 due the antitumour antibiotic activity of the
PBD natural products, of which DC-81 1 and prothra-
carcin 2 (Fig. 1) are typical, and synthetic analogues of
which are in clinical development.3 The related
pyrrolo[1,2-b][1,2,5]benzothiadiazepines (PBTD) 3 have
received much less interest, but are attractive as sulfon-
amide analogues of the antitumour antibiotic PBDs,4

and also as non-nucleosidic inhibitors of reverse tran-
scriptase.5 The 1,2,5-benzothiadiazepines have also
attracted attention for the range of activities that they
possess as analogues of the CNS-active 1,4-benzodiaze-
pines6 and also as tumour necrosis factor-alpha convert-
ing enzyme (TACE) inhibitors, and as inhibitors of
metalloproteinases in general.6c,7 Almost all reported
syntheses of the PBDs and PBTDs use proline as the
source of the five-membered ring,1–5 with only a few
methods relying on a de novo pyrrole construction
methodology,1,8 and there are no methods, which con-
struct the pyrrole from a diene. Although relatively
unexploited, the synthesis of simple (unfused) pyrroles
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from dienes has proven its importance to the synthetic
chemist.9 In this letter we report that 2-arylsulfonyl sub-
stituted 1,2-thiazine-1-oxides 4 (see Fig. 1), which are
easily constructed from a diene via a Diels–Alder reac-
tion, can be transformed in a one-pot process into the
1-arylsulfonyl-substituted pyrroles 5, which can then
be easily converted into the PBTD nucleus.

Our interest in this area came about as part of a pro-
gramme of studies aimed at exploring the uses of 1,2-
thiazine-1-oxides in heterocyclic synthesis.10–12 We
previously reported that 2-(o-azidobenzenesulfonyl)-
1,2-thiazine-1-oxides 4 are precursors for the synthesis
of unsaturated bicyclic 1,2,5-benzothiadiazepines via
conversion into a,x-iminophosphoranyl ketones and
subsequent aza-Wittig reaction.12 One of the key trans-
formations in this process was the construction of 1-(o-
azidobenzenesulfonyl)-1,2-thiazine-1-oxides 4 via a
Diels–Alder reaction, which relied upon the in situ gen-
eration of the unstable N-sulfinyl dienophile 6 (see Fig.
1) by treating the sulfonamide with pyridine and thionyl
chloride. The Diels–Alder reaction was high yielding but
gave, on occasion, the 1-(o-azidobenzenesulfonyl)pyr-
role 7 (Fig. 1) as a minor product (<5%). We became
interested in optimising the yield of this pyrrole as it is
a potential intermediate for the synthesis of PBTDs.
The origin of this pyrrole product would seem to be base
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catalysed ring opening of the 1,2-thiazine-1-oxide 4, sub-
sequent closure to a pyrrolidine 8 and loss of HSOH to
give the pyrrole 7, as shown in Scheme 1. Indeed, Harr-
ington9a has also observed the low yielding formation of
pyrroles from 1,2-thiazine-1-oxides under similar basic
conditions, and went on to optimise the sequence to
great effect9a via the addition of a thiophile, trimethyl
phosphite, in a synthetic approach to simple (unfused)
1-(p-toluenesulfonyl)pyrroles.

The use of trimethyl phosphite in this conversion was
attractive to us as we anticipated that we could under-
take concurrent conversion of the azide group in com-
pound 7 into an amine via the hydrolysis of an
intermediate iminophosphorane [ArN@P(OMe)3],
formed after Staudinger reaction of the azide with the
phosphite.13 Our retrosynthetic strategy for the PBTD
nucleus 3 is shown in Scheme 2 and relies upon the
installation of the imine bond as the final step, giving
the formylated precursor 9 or 10, and hence leading to
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the 1-(o-aminobenzenesulfonyl)pyrrole 11 as the key tar-
get for formylation. Functional group interconversion
(azide to amine) leads back to compound 7, and the
key transformation of 1,2-thiazine-1-oxide into pyrrole
gives the readily available (see below) 2-(o-azido-
benzenesulfonyl)-1,2-thiazine-1-oxides 4 as starting
materials.

The 2-(o-azidobenzenesulfonyl)-1,2-thiazine-1-oxides 4
were constructed using a hetero Diels–Alder reaction14

between the appropriate diene and the N-sulfinyl hetero-
cumulene15 6, derived from o-azidobenzenesulfonamide
12, as shown in Scheme 3. o-Azidobenzenesulfonamide
12 was obtained from o-aminobenzenesulfonamide in
over 90% yield via diazotisation and treatment with so-
dium azide. o-Aminobenzenesulfonamide could not be
used directly as the starting material for the sulfinylation
reaction as this resulted in the formation of the dithiad-
iazine 13. The N-sulfinyl 6 was best formed from a 1:1:2
ratio of sulfonamide 12, thionyl chloride and pyridine,
or
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Scheme 3. Reagents and conditions: (i) NaNO2, HCl(aq) then NaN3. (ii) SOCl2, pyridine, THF, 0 �C, 3h. (iii) R1HC@CR2–CR3@CH2. (iv)

P(OMe)3, Et3N, MeOH, 25�C, then 2M NaOH(aq). (v) HCl(g), THF, room temp. (vi) HCO2H, (MeCO)2O, THF. (vii) P(O)Cl3, (CH2Cl)2.
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and had to be formed in situ, as attempted isolation
resulted in its hydrolysis back to the sulfonamide.
Thus, the 2-(o-azidobenzenesulfonyl)-1,2-thiazine-1-oxi-
des 4a–c were obtained from o-azidobenzenesulfona-
mide in yields of 78%, 82% and 93%, respectively, and
were next treated with a 2:1 molar equivalent mixture
of trimethyl phosphite:triethylamine in methanol. The
desired 1-(o-aminobenzenesulfonyl)pyrroles 11a–c were
isolated in yields of 50%, 73% and 50%, respectively,
after basic aqueous (2M NaOH) work-up, good yields
considering the multi-step nature of the process. The
phosphoramidates 14a–c were the only other products
of this reaction and were isolated in yields of 23%,
10% and 18%, respectively, and are probably the result
of partial basic hydrolysis of the iminophosphorane.
The phosphoramidates 14 could be converted into the
amine 11 in 85–90% yields using gaseous hydrogen chlo-
ride in THF.16

The conversion of the 1-(o-aminobenzenesulfonyl)pyr-
roles 11 into the PBTD nucleus required the introduc-
tion of a single carbon. Vilsmeier formylation of the
pyrrole ring in compound 11 gave the desired product
9 (shown in Scheme 2) but, in the event, this would
not cyclise, probably due to the deactivation of the alde-
hyde by delocalisation into the pyrrole ring. However,
N-formylation using a preformed mixture of acetic
anhydride and formic acid17 gave the N-formylated
products 10a–c (Scheme 3) in yields of 98%, 77% and
83%, respectively. The final ring closure was effected
by the Bischler–Napieralski reaction using phosphorus
oxychloride in 1,2-dichloroethane and gave the desired
PBTDs 3a–c in 55%, 59% and 43% yields,
respectively.18,19

To conclude, a concise route to the pyrrolobenzothia-
diazepine (PBTD) nucleus has been reported via the
one-pot conversion of 2-(o-azidobenzenesulfonyl)-1,2-
thiazine-1-oxides into 1-(o-aminobenzenesulfonyl)pyr-
roles followed by formylation and Bischler–Napieralski
ring closure. The PBTDs are attractive as sulfonamide
analogues of the synthetic and natural antitumour pyr-
rolobenzodiazepines (PBDs). We are now adapting this
route to allow access to such PBDs.
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Preparation of 1-(2-aminobenzenesulfonyl)pyrroles 11: to
a rapidly stirring solution of triethylamine (1equiv) and
trimethylphosphite (2equiv) in anhydrous methanol
(10mL) was added the 1,2-thiazine 1-oxide 4 (0.30–
0.50g, 1equiv) in one portion and the mixture was stirred
at room temperature under an atmosphere of dry nitrogen
for 2h. The volatiles were removed by rotary evaporation
and the crude mixture was purified by silica column
chromatography (petroleum ether–ethyl acetate
40:60+10% triethylamine). For example, compound 11c
(0.135g, 50%) was obtained as pale yellow oil from 1,2-
thiazine 1-oxide 4c (0.350g, 1.07mmol). dH (400MHz,
CDCl3): 1.91 (6H, s, 2 ·Me), 4.5–4.7 (2H, br s, NH2), 6.63
(1H, d, J 8.2, ArH), 6.71 (1H, t, J 7.6, ArH), 6.84 (2H, s,
2 · pyrrole-H), 7.25 (1H, t, J 7.4, ArH), 7.61 (1H, d, J 8.1,
ArH). dC (100MHz, CDCl3): 10.1 (Me), 117.4 (CH), 117.6
(CH), 117.8 (CH), 120.0 (q), 124.2 (q), 129.2 (CH), 135.0
(CH), 145.6 (q). mmax(thin film, cm�1): 3457 (s, NH2), 3377
(s, NH2), 2966 (m), 2919 (m), 1636 (s), 1599 (m), 1484 (s),
1455 (m), 1348 (m), 1296 (m), 1068 (s), 1034 (s), 829 (s),
744 (m), 699 (m), 610 (m), 588 (m). EI+ mass spectrum
(m/z, %): 250 ([M]+, 70%), 185 (25%), 156 (20%), 108
(35%), 94 (100%), 65 (80%), 39 (50%). HRMS (ESI+):
Found [M+H+] 251.0845, C12H14N2O2S requires 251.0849.
Preparation of 1-(2-formamidobenzenesulfonyl)pyrroles
10: formic acid (2.25equiv) was added into acetic anhy-
dride (2equiv) at 0 �C and the solution was stirred at room
temperature for 2h. This solution was added to a solution
of the 1-(2-aminobenzenesulfonyl)pyrrole 11 (0.10–0.20g,
1equiv) in anhydrous tetrahydrofuran (5mL) and the
reaction mixture was stirred at room temperature for 20h.
The crude product was purified by silica column chroma-
tography (petroleum ether–ethyl acetate 40:60). As an
example, compound 10c (0.120g, 83%) was obtained as a
pale yellow oil from 1-(2-aminobenzenesulfonyl)pyrrole
11c (0.130g, 0.52mmol). dH (400MHz, CDCl3): 1.97 (6H,
s, 2 · Me), 6.85 (2H, s, 2 · pyrrole-H), 7.23 (1H, t, J 7.7,
ArH), 7.61 (1H, t, J 7.7, ArH), 7.77 (1H, d, J 8.0, ArH),
8.52 (1H, d, J 7.9, ArH), 8.56 (1H, s, CHO), 9.45 (1H, br s,
NH). dC (100MHz, CDCl3): 10.1 (Me), 117.5 (CH), 123.0
(CH), 124.2 (CH), 125.7 (q), 125.8 (q), 126.1 (q), 128.8
(CH), 135.1 (CH), 158.8 (CHO). mmax (thin film, cm�1):
3290 (m, NH), 3020 (w), 2921 (w), 1706 (s), 1674 (s), 1579
(m), 1514 (m), 1403 (m), 1358 (m), 1290 (m), 1216 (s), 1160
(s), 1071 (m), 669 (m), 611 (m). EI+ mass spectrum (m/z,
%): 278 ([M+], 60%), 250 (10%), 228 (60%), 184 (85%), 156
(20%), 120 (50%), 95 (100%), 65 (85%). HRMS (CI+NH3):
Found [M+NHþ

4 ] 296.1063, C13H14N2O3S requires
296.1063.
Preparation of pyrrolobenzothiadiazepines 3: A solution
of 1-(2-formamidobenzenesulfonyl)pyrrole 10 (�0.10g,
1equiv) and phosphorus oxychloride (21.6equiv) in 1,2-
dichloroethane (2mL) was heated at reflux temperature
for 3h. Evaporation of the solvent gave a residue, which
was purified by silica column chromatography (petroleum
ether–ethyl acetate, 40:60). For example, compound 3c
(0.040g, 43%) was obtained from 1-(2-forma-
midobenzenesulfonyl)pyrrole 10c (0.100g, 0.36mmol) as
a bright orange oil. dH (400MHz, CDCl3): 2.06 (3H, s,
Me), 2.26 (3H, s, Me), 7.33 (1H, s, pyrrole-H), 7.42 (1H,
dt, J 8.0, 1.0, ArH), 7.60–7.73 (2H, m, 2 · ArH), 8.04 (1H,
dd, J 7.9, 1.2, ArH), 8.62 (1H, s, N@CH). dC (100MHz,
CDCl3): 9.6 (Me), 9.9 (Me), 120.8 (CH), 123.6 (q), 124.9
(q), 125.3 (CH), 126.2(CH), 129.9(CH), 130.1 (q), 132.5
(q), 134.4 (CH), 144.1 (q), 148.6 (CH). mmax (cm�1): 2924
(w), 1603 (s), 1582 (s), 1458 (m), 1365 (s), 1294 (m), 1181
(s), 1137 (m), 1107 (m), 910 (s), 832 (m), 767 (m), 733 (m).
HRMS (ESI+): Found [M+H+] 261.0691, C13H12N2O2S
requires 261.0692.
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